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Are fullerenes aromatic? This question, which has elicited 
vigorous discussion, was raised in the very first description of the 
structure of C60, published by Osawa in 1970.1 He wondered if 
CM would constitute a novel, three-dimensional, aromatic system. 
Very recently, Haddon concluded that "C60 is of ambiguous 
aromatic character."2 

While quantitative estimates of aromatic stabilization energies 
are difficult to obtain, the magnetic criteria of aromaticity (e.g., 
chemical shifts and magnetic susceptibilities) provide insights in 
many other systems and are applicable to the fullerenes.3 

Although ring current effects on the chemical shifts of protons 
attached to exohedral substituents have already been noted,4 

substituted fullerenes are by necessity missing one or more of the 
double bonds.5 The endohedral noble gas compounds6'7 preserve 
the complete fullerene bonding and, in the case of 3He,7 have 
allowed measurement of the magnetic field in the very center of 
the structure. The 3He NMR chemical shifts of He@C6o and 
He@C70, -6.3 and -28.8 ppm,7 respectively, were found to differ 
appreciably from those predicted by Haddon et al.3 

A preliminary ab initio (GIAO-SCF) calculation was able to 
reproduce the experimental 5(He) value of He(S)C60 within ca. 
2 ppm.8 We now report a more detailed GIAO-SCF study calling 
attention to effects of cage geometries and He mobility on the 
computed He chemical shifts. Interesting comparisons are 
provided by the predicted 5(Li) values of the isoelectronic Li+@ C6O 
and Li+@C7o. 

The computed9'10 NMR chemical shifts of endohedral guest 
atoms and ions are summarized in Table 1. If one places a He 
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atom in the center of icosahedral, 3-2IG optimized C6O, a 5(3He) 
value of ca. -13 ppm is computed (employing tzp basis for He 
and dz for C), which deviates somewhat from the experimental 
value, -6.3 ppm.7-11 Using the MP2/TZP optimized C60 
geometry12 rather than the SCF/3-21G one affords a S(He) value 
of-8.7 ppm, which is in better agreement with experiment. The 
computed He chemical shift is surprisingly sensitive to the lengths 
of CC bonds 3.5 A away! In particular, the degree of bond 
alternation seems critical: While the two CC bond lengths in C6O 
differ appreciably at SCF levels (3-2IG: 1.367/1.453 A), a trend 
toward bond equalization is apparent in the MNDO (1.400/ 
1.474 A),13 in the gas-phase electron diffraction [1.401(1O)/ 
1.458(6) A],14 and in the MP2/TZP (1.406/1.446 A)12 geo­
metries. This structural trend is paralleled by a decrease of the 
computed endohedral He shielding (5 « -13, -12, -11, and -9 
ppm, respectively, in the same sequence, see Table 1). For the 
"idealized" geometry with equal CC bond lengths of 1.4 A (as 
employed by Haddon in his London HMO calculations3), a value 
of ca. -4 ppm is computed (Table 1). 

It has been estimated that "the 3He atom senses the magnetic 
field only inside a sphere of less than 1 A diameter at the center" 
of C60.

7 The field within this sphere appears to be very 
homogeneous, as displacement of the He out of the center (by 
0.5 A along one 5-fold axis) leaves the computed 5(He) virtually 
unchanged (Table 1). 

According to Haddon's predictions,3 the hexaanion of C6O 
should be highly aromatic and should possess only diamagnetic 
ring currents. In complete accord with this prediction, 5(3He) 
«-58ppmiscomputedforHe@C60

6"(TableI).15 Interestingly, 
the C6O carbons are calculated to be deshielded by ca. 25 ppm 
with respect to the neutral complex, despite bearing partial 
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Table 1. Computed (GIAO-SCF)" Chemical Shifts* of Endohedral 
He and Li+ Fullerene Complexes 

fullerene 
compd 

HeQC60 

He® Ceo 
HeQC60 

HeQC6O 
He® CM 

HeQC6O 

HeQC60
6" 

He ® C7O 
He@C7o 
He@C7o 

He® C70 

Li+SC 6 0 

Li+SC 6 0 

Li+® C70 

geometry' 

3-21G 
MNDO* 
electron diffractior/ 
MP2/TZP* 
MP2/TZP, 

He displaced* 
idealized' 

6-31+G 

3-21G 
X-ray* 
3-21G, 

He displaced* 
3-2IG, 

He displaced' 
MP2/TZP 
MP2/TZP, 

Li displaced"1 

3-2IG 

symmetry 

/* 
/* 
/* 
/* 
Cst, 

h 
Ik 

Dik 
DiH 
C5, 

Ca, 

h 
Cio 

Dik 

S(He) 

-12.9 
-11.7 
-10.6 

-8.7 
-9.0 

-3.8 

-58.3 

-24.0 
-24.3 
-23.9 

-24.1 

" Employing tzp(He),II(Li),dz(C) basis. * In parts per million, relative 
to He and Li(OH:)4+, respectively.c Source of fullerene cage geometry. 
rfReference7. 'Fromreference 13./Fromreference 14. 'Fromreference 
12. * By 0.5 A along Cs axis.' Equal CC bond lengths of 1.4 A employed. 
I From reference 17. *By 1.0 A along Cs axis. 'By 0.5 A toward an 
equatorial six-membered ring. m By 1.4 A along C5 axis. 

negative charges. The same trend has been noted experimentally 
for 5(13C) of C6O polyanions which are deshielded up to 14 ppm 
relative to neutral C6O-16 

Compared to C6o, the 3-2IG structure of C70 performs slightly 
better: the computed chemical shift of an encapsulated 3He atom, 
-24 ppm, deviates less than 5 ppm from the experimental value, 
-28.8 ppm.7 Practically the same result, -24 ppm, is obtained 
when the experimental (X-ray) C7o geometry17 is employed (Table 
1). The bond alternation in the equatorial six-membered rings 
is already quite small at SCF levels [3-21G, 1.403 and 1.414 A; 
cf. X-ray, 1.407(7) and 1.430(4) A, respectively17]. Unfortu­
nately, no MP2 optimized structure of C7o has been reported to 
date. As for HeOC60, the exact position of the He atom in the 
C70 cage hardly affects 5(He): displacements along the 5-fold 
(by 1.0 A) and 2-fold axes (by 0.5 A toward an equatorial six-
membered ring) afford changes in the computed 5(He) of only 
+0.1 and -0.1 ppm, respectively. As expected, the computed He 
atomic charge (employing Mulliken population analysis) is 0 in 
both He(DC60 and He@C70. Thus, the substantial difference in 
5(He) for both molecules is qualitatively consistent with the 
proposed ring current models.3 The quantitative, i.e., numerical, 
differences between our results and Haddon's London HMO 
calculations3 may be due in part to the use of idealized geometries 
in the latter (see above). Also, c-effects, which are not accounted 
for in the Hflckel approach, may affect the endohedral shield-
ings: For the fully hydrogenated He @ C60H60 (/* symmetry) and 
HeOC70H70 (Dsk), 5(He) chemical shifts of-5.2 and -5.4 ppm, 
respectively, are computed (3-21G geometries). 
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7Li chemical shifts are a useful probe of ring current effects 
in organolithium compounds.18 Since Li+ is isoelectronic with 
He, we were interested in the 5(Li) values of Li+OC60 and 
Li+OC70. Placing Li+ in the centers of the C60 and C70 cages 
affords GIAO-SCF chemical shifts of -14.5 and -29.9 ppm, 
respectively. Moving Li+ out of the center in C60 (by 1.4 A along 
a 5-fold axis as suggested by LDF calculations19) affects 5(Li) 
only slightly, i.e., by less than 1 ppm (Table 1). The computed 
upfield shift of Li+ in C60 (5 « -15 ppm) is substantial and is 
comparable to that of Li+ sandwiched between two cyclopen-
tadienyl anions (5 = -13.1 ppm18a). The calculated upfield shift 
of Li+ in the C70 cage is even larger, suggesting that 7Li NMR 
could readily distinguish between exo- and endohedral Li+-
fullerene complexes. For both He and Li+ in C70, notable chemical 
shift anisotropics of Aa = -12 ppm are predicted.20 

In summary, experimental 3He NMR chemical shifts of 
HeOC60 and HeOC70 are reproduced reasonably well at the 
GIAO-SCF/tzp(He)/dz(C) level, employing MP2/TZP and 
3-2IG geometries, respectively. The computed 5(3He) values 
are quite sensitive to changes in the host fullerene structure,21 but 
not to the exact position of the He atom near the center of the 
cage. Qualitatively similar results are predicted for 5(7Li) in the 
isostructural Li+OC60 and Li+OC70 complexes. Ring currents 
and their directly observable effects upon chemical shieldings22 

are important diagnostic indicators of aromaticity. Our findings 
support earlier conclusions that C60 is aromatic, but only to a 
modest extent. The aromaticity in C70 and especially in C60

6- are 
greater, judging from the magnetic criteria. Clearly, chemical 
shifts of endohedral guests will be highly significant for the higher 
fullerenes, as well as for fullerene derivatives,23 which are currently 
being investigated. 
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